Homework 6 Solution

Chapter 5

Problem 5.2 When a particle with charge q and mass m is introduced into a medium with a uniform field \mathbf{B} such that the initial velocity of the particle \mathbf{u} is perpendicular to \mathbf{B} (Fig. P5.2), the magnetic force exerted on the particle causes it to move in a circle of radius a. By equating \mathbf{F}_{m} to the centripetal force on the particle, determine a in terms of q, m, u, and \mathbf{B}.

Figure P5.2: Particle of charge q projected with velocity \mathbf{u} into a medium with a uniform field \mathbf{B} perpendicular to \mathbf{u} (Problem 5.2).

Solution: The centripetal force acting on the particle is given by $F_{c}=m u^{2} / a$. Equating F_{c} to F_{m} given by Eq. (5.4), we have $m u^{2} / a=q u B \sin \theta$. Since the magnetic field is perpendicular to the particle velocity, $\sin \theta=1$. Hence, $a=m u / q B$.

Problem 5.4 The rectangular loop shown in Fig. P5.4 consists of 20 closely wrapped turns and is hinged along the z-axis. The plane of the loop makes an angle of 30° with the y-axis, and the current in the windings is 0.5 A . What is the magnitude of the torque exerted on the loop in the presence of a uniform field $\mathbf{B}=\hat{\mathbf{y}} 2.4 \mathrm{~T}$? When viewed from above, is the expected direction of rotation clockwise or counterclockwise?

Figure P5.4: Hinged rectangular loop of Problem 5.4.
Solution: The magnetic torque on a loop is given by $\mathbf{T}=\mathbf{m} \times \mathbf{B}$ (Eq. (5.20)), where $\mathbf{m}=\hat{\mathbf{n}} N I A$ (Eq. (5.19)). For this problem, it is given that $I=0.5 \mathrm{~A}, N=20$ turns, and $A=0.2 \mathrm{~m} \times 0.4 \mathrm{~m}=0.08 \mathrm{~m}^{2}$. From the figure, $\hat{\mathbf{n}}=-\hat{\mathbf{x}} \cos 30^{\circ}+\hat{\mathbf{y}} \sin 30^{\circ}$. Therefore, $\mathbf{m}=\hat{\mathbf{n}} 0.8\left(\mathrm{~A} \cdot \mathrm{~m}^{2}\right)$ and $\mathbf{T}=\hat{\mathbf{n}} 0.8\left(\mathrm{~A} \cdot \mathrm{~m}^{2}\right) \times \hat{\mathbf{y}} 2.4 \mathrm{~T}=-\hat{\mathbf{z}} 1.66(\mathrm{~N} \cdot \mathrm{~m})$. As the torque is negative, the direction of rotation is clockwise, looking from above.

Problem 5.12 Two infinitely long, parallel wires are carrying 6-A currents in opposite directions. Determine the magnetic flux density at point P in Fig. P5.12.

Figure P5.12: Arrangement for Problem 5.12.
Solution:

$$
\begin{equation*}
\mathbf{B}=\hat{\boldsymbol{\phi}} \frac{\mu_{0} I_{1}}{2 \pi(0.5)}+\hat{\boldsymbol{\phi}} \frac{\mu_{0} I_{2}}{2 \pi(1.5)}=\hat{\boldsymbol{\phi}} \frac{\mu_{0}}{\pi}(6+2)=\hat{\boldsymbol{\phi}} \frac{8 \mu_{0}}{\pi} \tag{T}
\end{equation*}
$$

5.15 A circular loop of radius a carrying current I_{1} is located in the $x-y$ plane as shown in Fig. P5.15. In addition, an infinitely long wire carrying current I_{2} in a direction parallel with the z-axis is located at $y=y_{0}$.

Figure P5.15 Problem 5.15.
(a) Determine \mathbf{H} at $P=(0,0, h)$.
(b) Evaluate \mathbf{H} for $a=3 \mathrm{~cm}, y_{0}=10 \mathrm{~cm}, h=4 \mathrm{~cm}, I_{1}=10 \mathrm{~A}$, and $I_{2}=20 \mathrm{~A}$.

Solution:

(a) The magnetic field at $P=(0,0, h)$ is composed of \mathbf{H}_{1} due to the loop and \mathbf{H}_{2} due to the wire:

$$
\mathbf{H}=\mathbf{H}_{1}+\mathbf{H}_{2} .
$$

Eq. (5.34) applies to a current in CCW direction, but in the loop of Fig. P5.15, the current is CW. Hence, with $z=h$ and adding a minus sign, we have

$$
\mathbf{H}_{1}=\hat{\mathbf{z}} \frac{-I_{1} a^{2}}{2\left(a^{2}+h^{2}\right)^{3 / 2}} \quad(\mathrm{~A} / \mathrm{m})
$$

From (5.30), the field due to the wire at a distance $r=y_{0}$ is

$$
\mathbf{H}_{2}=\hat{\boldsymbol{\phi}} \frac{I_{2}}{2 \pi y_{0}}
$$

where $\hat{\boldsymbol{\phi}}$ is defined with respect to the coordinate system of the wire. Point P is located at an angel $\phi=-90^{\circ}$ with respect to the wire coordinates. From Table 3-2,

$$
\begin{aligned}
\hat{\boldsymbol{\phi}} & =-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi \\
& =\hat{\mathbf{x}} \quad\left(\text { at } \phi=-90^{\circ}\right) .
\end{aligned}
$$

Hence,

$$
\mathbf{H}=\hat{\mathbf{z}} \frac{-I_{1} a^{2}}{2\left(a^{2}+h^{2}\right)^{3 / 2}}+\hat{\mathbf{x}} \frac{I_{2}}{2 \pi y_{0}} \quad(\mathrm{~A} / \mathrm{m}) .
$$

(b)

$$
\mathbf{H}=-\hat{\mathbf{z}} 36+\hat{\mathbf{x}} 31.83 \quad(\mathrm{~A} / \mathrm{m})
$$

Problem 5.21 Current I flows along the positive z-direction in the inner conductor of a long coaxial cable and returns through the outer conductor. The inner conductor has radius a, and the inner and outer radii of the outer conductor are b and c, respectively.
(a) Determine the magnetic field in each of the following regions: $0 \leq r \leq a$, $a \leq r \leq b, b \leq r \leq c$, and $r \geq c$.
(b) Plot the magnitude of \mathbf{H} as a function of r over the range from $r=0$ to $r=10 \mathrm{~cm}$, given that $I=10 \mathrm{~A}, a=2 \mathrm{~cm}, b=4 \mathrm{~cm}$, and $c=5 \mathrm{~cm}$.

Solution:

(a) Following the solution to Example 5-5, the magnetic field in the region $r<a$,

$$
\mathbf{H}=\hat{\boldsymbol{\phi}} \frac{r I}{2 \pi a^{2}},
$$

and in the region $a<r<b$,

$$
\mathbf{H}=\hat{\boldsymbol{\phi}} \frac{I}{2 \pi r} .
$$

The total area of the outer conductor is $A=\pi\left(c^{2}-b^{2}\right)$ and the fraction of the area of the outer conductor enclosed by a circular contour centered at $r=0$ in the region $b<r<c$ is

$$
\frac{\pi\left(r^{2}-b^{2}\right)}{\pi\left(c^{2}-b^{2}\right)}=\frac{r^{2}-b^{2}}{c^{2}-b^{2}}
$$

The total current enclosed by a contour of radius r is therefore

$$
I_{\mathrm{enclosed}}=I\left(1-\frac{r^{2}-b^{2}}{c^{2}-b^{2}}\right)=I \frac{c^{2}-r^{2}}{c^{2}-b^{2}}
$$

and the resulting magnetic field is

$$
\mathbf{H}=\hat{\boldsymbol{\phi}} \frac{I_{\text {enclosed }}}{2 \pi r}=\hat{\phi} \frac{I}{2 \pi r}\left(\frac{c^{2}-r^{2}}{c^{2}-b^{2}}\right) .
$$

For $r>c$, the total enclosed current is zero: the total current flowing on the inner conductor is equal to the total current flowing on the outer conductor, but they are flowing in opposite directions. Therefore, $\mathbf{H}=0$.
(b) See Fig. P5.21.

Figure P5.21: Problem 5.21.

Problem 5.28 A uniform current density given by

$$
\mathbf{J}=\hat{\mathbf{z}} J_{0} \quad\left(\mathrm{~A} / \mathrm{m}^{2}\right)
$$

gives rise to a vector magnetic potential

$$
\mathbf{A}=-\hat{\mathbf{z}} \frac{\mu_{0} J_{0}}{4}\left(x^{2}+y^{2}\right) \quad(\mathrm{Wb} / \mathrm{m})
$$

(a) Apply the vector Poisson's equation to confirm the above statement.
(b) Use the expression for \mathbf{A} to find \mathbf{H}.
(c) Use the expression for \mathbf{J} in conjunction with Ampère's law to find \mathbf{H}. Compare your result with that obtained in part (b).

Solution:

(a)

$$
\begin{aligned}
\nabla^{2} \mathbf{A}=\hat{\mathbf{x}} \nabla^{2} A_{x}+\hat{\mathbf{y}} \nabla^{2} A_{y}+\hat{\mathbf{z}} \nabla^{2} A_{z} & =\hat{\mathbf{z}}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}+\frac{\partial^{2}}{\partial z^{2}}\right)\left[-\mu_{0} \frac{J_{0}}{4}\left(x^{2}+y^{2}\right)\right] \\
& =-\hat{\mathbf{z}} \mu_{0} \frac{J_{0}}{4}(2+2)=-\hat{\mathbf{z}} \mu_{0} J_{0}
\end{aligned}
$$

Hence, $\nabla^{2} \mathbf{A}=-\mu_{0} \mathbf{J}$ is verified.
(b)

$$
\begin{aligned}
\mathbf{H}=\frac{1}{\mu_{0}} \nabla \times \mathbf{A} & =\frac{1}{\mu_{0}}\left[\hat{\mathbf{x}}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+\hat{\mathbf{y}}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+\hat{\mathbf{z}}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)\right] \\
& =\frac{1}{\mu_{0}}\left(\hat{\mathbf{x}} \frac{\partial A_{z}}{\partial y}-\hat{\mathbf{y}} \frac{\partial A_{z}}{\partial x}\right) \\
& =\frac{1}{\mu_{0}}\left[\hat{\mathbf{x}} \frac{\partial}{\partial y}\left(-\mu_{0} \frac{J_{0}}{4}\left(x^{2}+y^{2}\right)\right)-\hat{\mathbf{y}} \frac{\partial}{\partial x}\left(-\mu_{0} \frac{J_{0}}{4}\left(x^{2}+y^{2}\right)\right)\right] \\
& =-\hat{\mathbf{x}} \frac{J_{0} y}{2}+\hat{\mathbf{y}} \frac{J_{0} x}{2} \quad(\mathrm{~A} / \mathrm{m}) .
\end{aligned}
$$

(c)

$$
\begin{gathered}
\oint_{C} \mathbf{H} \cdot d \mathbf{l}=I=\int_{S} \mathbf{J} \cdot d \mathbf{s} \\
\hat{\boldsymbol{\phi}} H_{\phi} \cdot \hat{\boldsymbol{\phi}} 2 \pi r=J_{0} \cdot \pi r^{2} \\
\mathbf{H}=\hat{\boldsymbol{\phi}} H_{\phi}=\hat{\boldsymbol{\phi}} J_{0} \frac{r}{2} .
\end{gathered}
$$

Figure P5.28: Current cylinder of Problem 5.28.

We need to convert the expression from cylindrical to Cartesian coordinates. From Table 3-2,

$$
\begin{aligned}
\hat{\boldsymbol{\phi}} & =-\hat{\mathbf{x}} \sin \phi+\hat{\mathbf{y}} \cos \phi=-\hat{\mathbf{x}} \frac{y}{\sqrt{x^{2}+y^{2}}}+\hat{\mathbf{y}} \frac{x}{\sqrt{x^{2}+y^{2}}} \\
r & =\sqrt{x^{2}+y^{2}}
\end{aligned}
$$

Hence

$$
\mathbf{H}=\left(-\hat{\mathbf{x}} \frac{y}{\sqrt{x^{2}+y^{2}}}+\hat{\mathbf{y}} \frac{x}{\sqrt{x^{2}+y^{2}}}\right) \cdot \frac{J_{0}}{2} \sqrt{x^{2}+y^{2}}=-\hat{\mathbf{x}} \frac{y J_{0}}{2}+\hat{\mathbf{y}} \frac{x J_{0}}{2},
$$

which is identical with the result of part (b).

Problem 5.30 In the model of the hydrogen atom proposed by Bohr in 1913, the electron moves around the nucleus at a speed of $2 \times 10^{6} \mathrm{~m} / \mathrm{s}$ in a circular orbit of radius $5 \times 10^{-11} \mathrm{~m}$. What is the magnitude of the magnetic moment generated by the electron's motion?

Solution: From Eq. (5.69), the magnitude of the orbital magnetic moment of an electron is

$$
\left|m_{0}\right|=\left\lvert\,-\frac{1}{2}\right. \text { eur } \left\lvert\,=\frac{1}{2} \times 1.6 \times 10^{-19} \times 2 \times 10^{6} \times 5 \times 10^{-11}=8 \times 10^{-24} \quad\left(\mathrm{~A} \cdot \mathrm{~m}^{2}\right)\right.
$$

Problem 5.32 The $x-y$ plane separates two magnetic media with magnetic permeabilities μ_{1} and μ_{2} (Fig. P5.32). If there is no surface current at the interface and the magnetic field in medium 1 is

$$
\mathbf{H}_{1}=\hat{\mathbf{x}} H_{1 x}+\hat{\mathbf{y}} H_{1 y}+\hat{\mathbf{z}} H_{1 z}
$$

find:
(a) H_{2}
(b) θ_{1} and θ_{2}
(c) Evaluate $\mathbf{H}_{2}, \theta_{1}$, and θ_{2} for $H_{1 x}=2(\mathrm{~A} / \mathrm{m}), H_{1 y}=0, H_{1 z}=4(\mathrm{~A} / \mathrm{m}), \mu_{1}=\mu_{0}$, and $\mu_{2}=4 \mu_{0}$

Figure P5.32: Adjacent magnetic media (Problem 5.32).

Solution:

(a) From (5.80),

$$
\mu_{1} H_{1 \mathrm{n}}=\mu_{2} H_{2 \mathrm{n}}
$$

and in the absence of surface currents at the interface, (5.85) states

$$
H_{1 \mathrm{t}}=H_{2 \mathrm{t}} .
$$

In this case, $H_{1 z}=H_{1 \mathrm{n}}$, and $H_{1 x}$ and $H_{1 y}$ are tangential fields. Hence,

$$
\begin{aligned}
\mu_{1} H_{1 z} & =\mu_{2} H_{2 z}, \\
H_{1 x} & =H_{2 x}, \\
H_{1 y} & =H_{2 y},
\end{aligned}
$$

and

$$
\mathbf{H}_{2}=\hat{\mathbf{x}} H_{1 x}+\hat{\mathbf{y}} H_{1 y}+\hat{\mathbf{z}} \frac{\mu_{1}}{\mu_{2}} H_{1 z} .
$$

(b)

$$
\begin{aligned}
H_{1 \mathrm{t}} & =\sqrt{H_{1 x}^{2}+H_{1 y}^{2}}, \\
\tan \theta_{1} & =\frac{H_{1 \mathrm{t}}}{H_{1 z}}=\frac{\sqrt{H_{1 x}^{2}+H_{1 y}^{2}}}{H_{1 z}}, \\
\tan \theta_{2} & =\frac{H_{2 \mathrm{t}}}{H_{2 z}}=\frac{\sqrt{H_{1 x}^{2}+H_{1 y}^{2}}}{\frac{\mu_{1}}{\mu_{2}} H_{1 z}}=\frac{\mu_{2}}{\mu_{1}} \tan \theta_{1} .
\end{aligned}
$$

(c)

$$
\begin{aligned}
\mathbf{H}_{2} & =\hat{\mathbf{x}} 2+\hat{\mathbf{z}} \frac{1}{4} \cdot 4=\hat{\mathbf{x}} 2+\hat{\mathbf{z}} \quad(\mathrm{A} / \mathrm{m}) \\
\theta_{1} & =\tan ^{-1}\left(\frac{2}{4}\right)=26.56^{\circ} \\
\theta_{2} & =\tan ^{-1}\left(\frac{2}{1}\right)=63.44^{\circ}
\end{aligned}
$$

Problem 5.38 A solenoid with a length of 20 cm and a radius of 5 cm consists of 400 turns and carries a current of 12 A . If $z=0$ represents the midpoint of the solenoid, generate a plot for $|\mathbf{H}(z)|$ as a function of z along the axis of the solenoid for the range $-20 \mathrm{~cm} \leq z \leq 20 \mathrm{~cm}$ in 1-cm steps.

Solution:

Position on axis of solenoid $z(\mathrm{~cm})$

Figure P5.38: Problem 5.38.
Let the length of the solenoid be $l=20 \mathrm{~cm}$. From Eq. (5.88a) and Eq. (5.88b), $z=a \tan \theta$ and $a^{2}+t^{2}=a^{2} \sec ^{2} \theta$, which implies that $z / \sqrt{z^{2}+a^{2}}=\sin \theta$. Generalizing this to an arbitrary observation point z^{\prime} on the axis of the solenoid, $\left(z-z^{\prime}\right) / \sqrt{\left(z-z^{\prime}\right)^{2}+a^{2}}=\sin \theta$. Using this in Eq. (5.89),

$$
\begin{align*}
\mathbf{H}\left(0,0, z^{\prime}\right)=\frac{\mathbf{B}}{\mu} & =\hat{\mathbf{z}} \frac{n I}{2}\left(\sin \theta_{2}-\sin \theta_{1}\right) \\
& =\hat{\mathbf{z}} \frac{n I}{2}\left(\frac{l / 2-z^{\prime}}{\sqrt{\left(l / 2-z^{\prime}\right)^{2}+a^{2}}}-\frac{-l / 2-z^{\prime}}{\sqrt{\left(-l / 2-z^{\prime}\right)^{2}+a^{2}}}\right) \\
& =\hat{\mathbf{z}} \frac{n I}{2}\left(\frac{l / 2-z^{\prime}}{\sqrt{\left(l / 2-z^{\prime}\right)^{2}+a^{2}}}+\frac{l / 2+z^{\prime}}{\sqrt{\left(l / 2+z^{\prime}\right)^{2}+a^{2}}}\right) \tag{A/m}
\end{align*}
$$

A plot of the magnitude of this function of z^{\prime} with $a=5 \mathrm{~cm}, n=400$ turns $/ 20 \mathrm{~cm}=$ 20,000 turns $/ \mathrm{m}$, and $I=12$ A appears in Fig. P5.38.

